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Abstract

This paper describes three types of situations in structural analysis where singularities at points can greatly influence
the global behavior of the configuration: (1) concentrated forces acting upon flat or curved membranes, (2) concen-
trated moments acting upon plates or shells, and (3) sharp corner sigularities in plates and shells. These singularities
may have strong effects upon static or dynamic deflections, free vibration frequencies and buckling loads. It is shown
that the concentrated forces acting upon flat or curved membranes, or concentrated moments acting upon plates and
shells, are improper models, and that correct theoretical analysis indicates that they are meaningless. Examples of sharp
corners discussed are (1) the re-entrant corner of a cantilever skew plate, (2) a free circular plate with a V-notch, and (3)
the obtuse corners of a simply supported parallelogram plate. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In four decades of research on membranes, plates and shells, the writer has encountered numerous
situations where infinite displacements, slopes, forces and/or bending and twisting moments arise. Some of
the published papers were studied in connection with the plate vibration monograph (Leissa, 1969), which
contains 500 references, and with the shell vibration monograph (Leissa, 1973), including 1000 references.
An additional 1000 plate vibration references were included in a series of subsequent review articles. A
summary of the laminated composite plate and theory literature on buckling and post-buckling examined
400 references (Leissa, 1985, 1987). And at least another 1000 papers dealing with membranes, plates and
shells have been looked through for other circumstances.

The infinite quantities arise in the mathematical solutions of membrane, plate and shell problems, and
these are termed out “singularities”. They are caused by various idealizations used to simplify representation
of physical problems, such as concentrated forces and moments, discontinuities in edge conditions, or sharp
corners. Typically, they are the consequences of theories and idealizations which have existed for a century
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or more, in order to simplify the mathematical solutions. Although current large computational capabilities
permits one to eliminate some of these singularities, doing so is typically not easy. That is, the more correct
idealizations may require enormous computational efforts.

Using classical theories for membrane, plate and shell displacements, one should be aware of their
shortcomings and limitations. This is especially true for the singularities which arise. If they are not con-
sidered properly, then highly inaccurate, or even meaningless, results can arise.

In this paper, the writer shares some of his thoughts on three types of singularities which may arise, and
are sometimes not considered properly by researchers and users of structural mechanics. These include (1)
concentrated forces acting upon membranes, (2) concentrated moments acting upon plates and shells, and
(3) sharp corners, both interior and exterior, used in models of plates and shells. Emphasis is given to the
pitfalls which should be avoided.

2. Concentrated forces and reactions on membranes

The classical equation of transverse motion for a perfectly flexible, planar membrane stretched uniformly
in all directions is
) *w
TVW—&-p—phatz, (1)
where T is the uniform inplane tension, V2, the Laplacian operator, p, a distributed transverse pressure, ,
time, and p and % are the mass density and thickness, respectively, of the membrane. If the right-hand side
of Eq. (1) is zero, one has a statically loaded membrane, if p = 0, the free vibration problem is described,
and if neither is zero, one has the dynamic response situation, including forced vibration.

All is well for these problems if 7 is sufficiently large, the transverse displacement, w, is sufficiently small
(so that 7" does not change significantly), and the membrane slope is small. These assumptions are required
in order to arrive at the linear form of Eq. (1). But a serious flaw arises if p is taken to be a concentrated
(i.e., point) force, instead of a distributed one. This shortcoming seems to be widely recognized among
analysts considering statically applied forces, but often ignored by those solving dynamic problems, es-
pecially when the concentrated force is the result of a point constraint.

Let us first review the well-known result for the static problem. Fig. 1(a) is a three-dimensional view of a
circular membrane of outer radius a, supposedly subjected to a point force, P, at its center. A cross-section
of the membrane taken at an arbitrary radius r is depicted in Fig. 1(b).

Because T is force/length, summing forces in the transverse direction yields

P —2mrTsing = 0. (2)
Assuming small slopes, sin¢ ~ tan¢ = —0w/0r. Substituting this into Eq. (2), and solving for the slope,

dw P \1

@ (m) 3 @
Integrating and applying the boundary condition w(a) = 0 results in

P r
Evaluating this at » = 0, one find that
dw

w(0) =co,  -(0) = —o0 (5)
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Fig. 1. Circular membrane subjected to a concentrated force at its center: (a) three-dimensional overall view and (b) cross-section in the
vicinity of the force.

no matter how small is P. Thus, according to the linear theory, the membrane has no resistance to the
concentrated force. The smallest force results in an infinite deflection.

One can approach this situation less directly by first applying P to a small, rigid disk at the membrane
center (Fig. 2), and then letting the disk radius, b, approach zero. The force P enters through a boundary
condition at r = b (the disk radius), and the membrane deflection is determined by the special case of Eq.
(1) with p = 0; i.e., V2w = 0. Its axisymmetric solution in polar coordinates is

w=C 1nr+C2, (6)

where C; and C, are constants of integration. The boundary conditions are w(a) = 0, and for small slopes,
at » = b, summing forces on the rigid disk,

dw
2mbT - (b) + P = 0. (7)

Applying the two boundary conditions, and solving for C; and C,, one obtains again Eq. (4) which, of
course, now applies only to » > b. As b becomes small, the same undesirable infinite values of deflection and
slope arise for any finite P.
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Fig. 2. Cross-section of a circular membrane, with a transverse force (P) applied to a rigid central disk of radius b.
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The membranes described above had circular boundaries, and the point force was applied at their
centers. However, the force could have acted at any point with the same fundamental result — finite forces
cause infinite displacements where they are applied, according to the classical, linear theory. Nor does this
conclusion depend upon the shape of the boundary. It can be elliptical, rectangular, or arbitrary. In all
cases, the membranes supply no resistance to the forces at their points of application.

The concentrated force could also be, supposedly, a reactive one. To approach such a situation clearly,
consider first an annular membrane fixed at its outer (» = a) and inner (» = b) circular boundaries, subjected
to uniform pressure (po), as described by Fig. 3. Eq. (1) then reduces to its equilibrium form,

Po
Viw=—"". 8
W= (3)
For uniform pressure, the static deflection is axisymmetric, so that
& 1d
Ve ——+4-—. 9
dr? + r dr 9)

The solution to Eq. (8) is
2
_ _
W—C11HV+C2 a7 . (10)
Applying the boundary conditions w(a) = w(b) = 0 yields

c _pa (b /e’ —1)

" 4T In(b/a) an
c _po_L12 1_(b2/a2—1)lna}
2T 4T In(b/a)

m P 17

Fig. 3. Annular membrane subjected to uniform pressure.




A.W. Leissa | International Journal of Solids and Structures 38 (2001) 3341-3353 3345

The reactive force at the inner boundary (r = b) is

F = [hrchliv:]rb (12a)
ar(B2)(B21 R, 1)

Taking the limit of the right-hand side as b/a — 0, shows that 7 — 0 as the inner circular boundary reduces
to a point. Thus, adding a point constraint to a membrane already supported on a circular boundary does
not help support the pressure loading. It is all supported by the outer boundary. This is verified by eval-
uating Eq. (12a) at » = a, and taking its limit as » — 0, which yields F = na’p, at the outer boundary.

The example immediately preceding should hardly be necessary. If a membrane can render no resistance
to an applied point force, then a “support point” can add no stiffness to the system. Interestingly, the
solution to the linear problem does continue to enforce zero displacement on the inner circular boundary as
b approaches zero, but the reactive force disappears.

In the published literature, there are a few research papers which purport to solve free vibration
problems for flat membranes which are constrained, in part, at points. The solution procedures used are not
exact, and therefore, the problems being solved are only approximations to the claimed physical situations.
That is, the resulting constraint forces are distributed over small, but finite, areas, or the differential
equation (1) is only approximately satisfied — a residual pressure results which should be zero, but is not,
and may have singularities.

To demonstrate the aspect described above, consider the free vibrations of an annular membrane fixed at
its outer and inner boundaries (» = a and b). For free vibrations p = 0 in Eq. (1). The well-known solution
to Eq. (1) is

w = [4,J,(kr) + B,Y,(kr)]cosnfsin wt, (13)

where A4, and B, are undetermined constant coefficients, J, and Y,,, Bessel functions of the first and second
kinds, respectively, of order n; k = phw®/T, n =0, 1, ..., oo, 0, the circumferential angle, and w, a free
vibration frequency. The displacement function w(r,6,¢) given by Eq. (13) represents all possible free
vibrational modes for membranes fixed entirely around their peripheries (i.e., 0 < 0 <2n).

Substituting Eq. (13) into the boundary conditions w(a, 0,¢) = w(b,0,t) = 0 yields two homogeneous
algebraic equations in the coefficients 4, and B,. For a nontrivial solution, one sets the determinant of the
coefficient matrix equal to zero, resulting in the frequency equation

Jnum(éz) —Jn(%)w) —o, (14)
a a
where 1 = ka are the desired eigenvalues, which are the nondimensional frequency parameters wa(ph/ T)l/ %,
Table 1 lists the first three frequencies (corresponding to 0, 1 and 2 interior nodal circles in the mode
shapes) for the axisymmetric (n = 0) modes of annular membranes having various b/a ratios, especially for
small b/a. One sees that, as b/a approaches zero, the lowest A approaches 2.405, which is the fundamental
frequency for the well-known case of a circular membrane not having an interior support. And the next two
frequencies approach those of the next two axisymmetric mode frequencies (5.520 and 8.654) of the classical
circular membrane. Thus, again, the point support adds no stiffness to the system. One would not expect the
frequencies for the nonaxisymmetric modes (n = 1,2,...,) to be affected by a central point support in any
case, for the diametral node lines fall upon the support. But a careful (i.e. accurate) solution of the problem
of the membrane supported at a noncentral point would also show all frequencies to be unaffected by the
support point. To generalize further, as was done previously for the static problem, adding point supports
to a membrane of any shape will not change its frequencies (again, according to the classical theory).
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Table 1

Nondimensional frequencies 4 = wa(ph/T )1/ 2 for the axisymmetric (n = 0) modes of annular membranes
b/a Mode number

1 2 3

0.40 5.183 10.443 15.688
0.20 3.816 7.786 11.732
0.10 3.314 6.858 10.377
0.02 2.884 6.136 9.376
0 2.405 5.520 8.654

By similar arguments, one sees that a transverse spring attached to a membrane does nothing to stiffen it,
and that a particle of mass attached does nothing to change the inertia of the system. Both must be dis-
tributed over finite lengths, or areas, to influence the membrane. And a concentrated exciting force, varying
sinusoidally in time, will elicit no response at all from the membrane, according to classical theory.

The examples above show that the classical theory for planar membranes clearly is inappropriate when
applied or reactive transverse forces are supposedly applied at points or, as may be inferred, when their
areas or circumferences of application become very small. Improved, nonlinear theories may be developed
which account for large slopes and material stretching (causing 7" which depend upon w). However, they
also could not deal with a point force because, as the zone of application diminishes in size, 7 would have to
become infinite to generate a finite transverse force. Such theories, although difficult to solve, would be
much better than the classical, linear theory for small (but finite) zones of application.

Finally, consider a nonplanar membrane as, for example, a balloon. Such configurations may be termed
shells without bending stiffness. Indeed, much has been written about membrane theories of shells, and
solutions of the resulting fourth-order system of differential equations which apply when the bending and
twisting moments are negligible. It is also known among experts in this field that such membranes cannot
withstand concentrated forces normal to their surfaces (cf. Novozhilov (1959), p. 100). That such curved
surfaces should behave the same as flat ones in response to concentrated normal forces may be expected
for, in the small vicinity of the force, the surface is effectively flat.

3. Concentrated moments on plates and shells

Classical bending theories for plates and shells admit concentrated forces in a reasonable manner. In
particular, plates and shells do resist such forces, exhibiting stiffness, unlike the membrane. Bending mo-
ments at the point of load application are infinite, but this is not a serious shortcoming. One should expect
infinite stresses under point loads.

The classical equation of transverse motion for thin, homogenous, isotropic, elastic plates is

2
DV4w+phaa—:2V:p, (15)
where D = ER*/12(1 — v?) is the flexural rigidity, V* = V2V2, the biharmonic differential operator, and the
other quantities are the same as those used in Eq. (1) for the membrane. For a static problem, the inertia
term is discarded, for free vibrations, p = 0, and for dynamic response problems, including forced vibra-
tions, all terms are retained.

Solutions abound for static plate problems with concentrated applied forces, especially for circular
plates. For example, Timoshenko showed (Timoshenko and Woinowsky-Krieger, 1959, p. 69) that for a
clamped circular plate of radius a, with a concentrated force (P) at its center, the deflection is
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Fig. 4. Plate subjected to a couple, Pc.

w= Lrl r+ (@ — 1) (16)

P
&nD 16nD

resulting in a finite maximum deflection wy,,, = Pa®/16nD at the plate center, » = 0, even though a loga-
rithmic term appears in Eq. (16). Unlike the membrane result in Eq. (4), Inr is here multiplied by 7.
However, the bending moments within the plate involve d*w/ds? and (1/r)dw/dr, which yield simple Inr
terms in their expressions, and corresponding infinite bending stresses under the force.

Timoshenko also dealt later with the concentrated force in his classic work (Timoshenko and Woi-
nowsky-Krieger, 1959, p. 325), but mainly to use it as a basis for generating a concentrated moment. One
may first apply two equal, and oppositely directed, forces P to a plate, separated from each other by a
distance ¢, to form a couple of magnitude Pc, as shown in Fig. 4. In terms of a Jocal coordinate origin
located at each force application point, the plate deflection due to each force is

e SPD il (d) (17)

where d is an arbitrary length. Superimposing the two solutions, and taking the limit as ¢ — 0, with Pc = M,
remaining constant, one arrives at a representation of a concentrated moment of magnitude M,. Timo-
shenko gave the resulting plate deflection as

M,

ﬁrlnacoso (18)

But if one evaluates the slope, which is the tangent of the rotation angle, then

dW M()

& = D (1+ln )cosO. (19)

At the point of application (» = 0), the slope is seen to become infinite, which corresponds to a 90° angle of
rotation, regardless of magnitude, M, of the applied moment. Thus, the plate has no rotational resistance to
a concentrated moment. Timoshenko made no mention of this.

One will arrive at the same conclusion if, for example, a moment, M), is applied to a rigid central disk of
a circular plate, as shown in Fig. 5. If M, is kept constant, and the ratio (b/a) of the disk radius to the plate
is decreased, the rotation angle increases without bound as 5/a — 0. One can see this trend in Table 64 of
Timoshenko’s book, which shows results for this problem, although the range of the table is only for
0.5<b/a<0.8.

Consequently, if one is calculating influence coefficients (or stiffness matrices) for plates, according to
classical plate theory, one can do it for concentrated forces. But concentrated moments are meaningless.
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Fig. 5. Annular plate with bending moment, M), applied to a rigid interior disk of radius b.

The published literature is replete with examples of plates which have moments applied to points. In
particular, problems are supposedly solved for plates which are clamped at points (not merely supported),
either statically or dynamically loaded — in the case of free vibrations, the dynamic loading is inertial.
“Clamped point™ solutions are found for cases of either interior or boundary points, or both. Numerical
results are reported for static deflections and free vibration frequencies, but they do not represent the
situation claimed. The solutions are approximate, not exact, and therefore, result in the moments being
applied along a finite length, instead of at a point.

The writer encountered this situation a few decades ago when he and a coworker attempted to obtain
accurate results for the static deflection and bending moments in a circular plate, uniformly loaded by
transverse pressure, with its boundary partially clamped (along a sector angle 2¢) on opposite sides, and the
remaining portion simply supported (Leissa and Clausen, 1967), as depicted in Fig. 6. The approximate
boundary point least squares method (a generalization of point matching, or boundary collocation) was
used. But as the clamping sector angle, 2a, diminished, the solution became unacceptably poor (large
boundary residuals which should be zero).

The writer has also encountered published papers wherein results are claimed for the buckling of plates
which are clamped at points. The same arguments apply here. That is, a point is capable of supplying a
valid transverse concentrated force to constrain the displacement, thereby increasing the buckling loads,
but it cannot generate a concentrated moment to restrain rotation.

Additional limitations are readily seen, as were elaborated upon in a bit more detail for membranes in
Section 2, except that for plates they apply to concentrated moments and rotational constraints, instead of
concentrated forces and translational constraints.

And the same arguments apply to classical shells; i.e., thin shells having both membrane and bending
stiffness. They, too, cannot resist concentrated moments at either interior or boundary points, nor can point
constraints resist rotations.
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Fig. 6. Circular plate, partially clamped and partially simply supported along its periphery.

4. Sharp corner singularities in plates and shells

Every stress analyst knows that interior sharp corners will produce infinite stresses (i.e., singularities)
there when loads are applied, and large stresses in the nearby surrounding region. This will occur for a plate
subjected to static or dynamic inplane loads (the plane stress problem), or bending forces or moments, or
for a shell. What does not secem to be generally known is that the singularities can also have significant
effects upon the global behavior of the plate or shell; e.g. its static deflection, free vibration frequencies,
forced dynamic response, or its critical buckling load. Or, to put it in other terms, if the stresses at the sharp
corner are not properly accounted for, significant errors in the calculated global behavior may result.

Three examples of plates undergoing bending deformation, where such important singularities may
arise, are seen in Fig. 7: (1) a cantilevered skew plate, clamped along one edge and free on the others; a
circular sectorial plate, with two free radial edges forming a re-entrant sharp corner; and a parallelogram
plate (shown as a rhombus) with all edges simply supported. Points where bending moment and stress
singularities arise in each of these examples are marked in Fig. 7 with an “S”.

When preparing to write Chapters 5-7 of his plate vibration monograph (Leissa, 1969), the writer found
a large amount of published results for the free vibration frequencies and mode shapes of cantilevered skew
plates, particularly for the cantilevered parallelogram shape. This seemed to be a consequence of the great
need for data which could be used for subsequent flutter and vibration analyses of aircraft and missile wings
or stabilizing surfaces. No exact solution of the free vibration problem is possible, and several approximate

cantilevered free simply supported
skew sectorial parallelogram

Fig. 7. Examples of plates having corner singularities.
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methods were used, as described in the monograph. As the skew angle (or “sweep angle’) is increased, it
was found that not only were the frequencies changed greatly, but that significant differences were seen
between the methods used in how large the changes were. At the obtuse corner where the clamped and free
edges intersect, the bending and twisting moments are singular, the strength of the singularity increasing as
the skew (and obtuse) angles increase. None of the analytical methods used gave any special consideration
to the singularities, and the stresses in the corner resulting from the analyses were always finite.

The stress singularities in sharp corners can be represented exactly, as was shown in two classic papers by
Williams (1952a,b). For each type of corner, there is an infinite set of functions which satisfy the boundary
conditions exactly on both intersecting edges, which we call corner functions. Thus, if such functions are
added to another global set of displacement functions, the corner stresses can be accounted for properly.
This will be demonstrated below for free vibrations of the first two types of plates shown in Fig. 7. The Ritz
method will be utilized. Mathematically complete sets of admissible displacement functions will be em-
ployed, which only need to satisfy the geometric (displacement and slope) boundary conditions. Such
functions yield upper bound approximations to the frequencies, and the exact frequencies may be ap-
proached as closely as desired if sufficient terms are taken. However, a set of corner functions will be added,
which accelerates the convergence exactly, because the stress singularity in the sharp corner is accounted
for.

Fig. 8 shows a cantilever skew plate of parallelogram shape having sides of length @ and b. Stress sin-
gularities occur at point O. For free vibrations, the transverse displacement, w, is sinusoidal in time:

w(&,n,1) = W(y,n)sinawt, (20)

where o is a natural frequency. Further, the displacement form is taken as W = W, + W, where W, is a sum
of algebraic polynomials,

M N
Wo(&m) =D Y Am™n" (21)
0

m=2 n=|
and W, is a sum of corner functions,

!

W(Em) = Y BIHEN) + 3 CW (En), )

i=1

Fig. 8. Cantilever skew plate, with coordinates.
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Table 2
Skew plate frequencies wa? cos*f(p/D)"? for a/b =1, f = 60°, v=10.3
Mode number Number of cor- Number of terms in polynomial (W)
ner functions 3x3 5x5 6x6 7x7
0 1.742 1.393 1.353 1.335
1 2 1.343 1.312 1.311 1.311
10 1.312 1.311 1.311 1.311
0 5.163 4.186 4.110 4.076
2 2 4.274 4.022 4.011 4.007
10 4.019 4.007 4.006 4.006
0 15.527 8.521 8.042 7.880
3 2 12.820 7.980 7.635 7.602
10 7.810 7.625 7.593 7.591
0 18.469 12.724 11.989 11.652
4 2 15.725 11.513 11.403 11.335
10 11.505 11.400 11.336 11.325

where W; and W;* are the real and imaginary parts of the complex eigenfunctions (Williams, 1952a) sat-
isfying the clamped and free boundary conditions along the radial lines # = 0 and =n/2 + f§ (Fig. 8). Sub-
stituting Egs. (21) and (22) into the proper strain energy and kinetic energy functionals (Leissa, 1969) and
using the Ritz method, free vibration frequencies (eigenvalues) and mode shapes (eigenfunctions) are de-
termined.

Table 2 shows nondimensional frequencies obtained for a rhombic (¢/b = 1) plate with a 60° skew angle
and Poisson’s ratio, v, of 0.3. Results are given using 9, 25, 36, or 49 terms in W, and 0, 2, or 10 terms in
W.. The frequencies are all upper bounds on the exact values. It is seen that poor convergence is obtained
when only the algebraic polynomials are used, and that adding two corner functions improves the con-
vergence considerably, because the corner stress singularities are then explicitly taken into account. For
larger skew angles, the stress singularities become increasingly important, as one finds for f = 75° (McGee
et al., 1992). Using polynomials alone would, in principle, yield results which will converge properly to
accurate values, but an enormous number of terms are needed, and round-off errors (ill conditioning)
would destroy the accuracy before adequate convergence is achieved.

A completely free, circular plate of radius R is depicted in Fig. 9. A V-notch having its vertex a distance
“c” from the center is cut into the plate. Transverse displacements are again assumed as W = W, + W,
where a product of algebraic and trigonometric polynomials is taken for W,, and where free—free corner
functions are used for W.. The Ritz method is again used to solve the free vibration problem.

Nondimensional frequencies for a completely free circular plate with a 30° notch (« = 330°) cut one-
fourth of the way across the plate (¢/R = 0.5) (Fig. 9 is drawn to these dimensions) are listed in Table 3.
Convergence using various numbers of polynomial and corner function terms is observed. It is seen that
poor convergence is obtained if insufficient corner functions are used. More details for this problem and its
solution procedure may be found in the study by Leissa et al. (1993). For a very sharp notch or crack
(x> 359° in Fig. 9), the corner functions were found to be especially important.

Various analyses for the free vibrations of the simply supported rhombic plate shown in Fig. 7 appear in
the literature, some of which are summarized in the monograph (Leissa, 1969). Accurate frequencies were
obtained by Huang et al. (1995) by the Ritz method, again using corner functions to represent the stress
singularities in the obtuse corners. It was found that the use of corner functions in the obtuse corners to
deal with the moment singularities there improved the results considerably, especially for large angles. In
that situation, the obtuse corner dominates the problem, and the moment singularities are also stronger.



3352 A.W. Leissa | International Journal of Solids and Structures 38 (2001) 3341-3353

Fig. 9. Circular plate with V-notch.

Table 3
Frequencies wR?(p/D)"? for a completely free plate with a V-notch (o = 330°, ¢/R = 0.5, v = 0.3)
Mode no. (sym- Number of cor- Number of terms in polynomial (})
metry class) ner functions 3 %3 5% 5 6x6 7% 7
0 5.320 5.318 5.315 5.312
1 1 5.064 5.021 5.021 5.006
(A) 5 4.959 4.949 4.942 4.937
15 4.898 4.892 4.889 4.887
0 5.488 5.484 5.478 5.471
2 1 5.317 5.310 5.305 5.302
) 5 5.304 5.300 5.298 5.297
15 5.293 5.291 5.290 5.289
0 9.030 9.022 9.014 9.005
3 1 8.802 8.794 8.789 8.786
S 5 8.789 8.785 8.782 8.780
15 8.773 8.770 8.769 8.768
0 12.326 12.317 12.307 12.298
4 1 11.155 11.073 11.004 10.949
(A) 5 10.785 10.745 10.718 10.701
15 10.571 10.551 10.541 10.534

The writer knows of no application of the corner singularity functions to shell problems. However, it is
expected that the singularity effects upon the global behavior of shells would be at least as important as
those found for plates. For such configurations, both bending and membrane stresses would have singu-
larities, and both the bending and plane stress singularity functions identified by Williams (1952a,b) should
be used.

5. Concluding remarks

The primary objective of this paper was to identify situations in membranes, plates or shells where stress
singularities may have strong effects upon the global behavior of the configuration. Indeed, in the case of
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concentrated forces acting upon flat or curved membranes, or concentrated moments acting upon plates or
shells, the singularities render the theoretical problem meaningless. Of course, the physical problem does
not exist either, for forces and moments must be applied to finite areas, or at least along lines of finite
length, to be meaningful. Concentrated forces or moments would seem to be reasonable theoretical rep-
resentations, for they are used successfully on beams or stretched strings. But these are one-dimensional
models, whereas membranes, plates and shells are two-dimensional models.

The sharp corner effects on plate and shell behavior need to be taken into account in any analysis. How it
was done with the Ritz method was described above. Finite elements are now the most popular method of
structural analysis in use. But if the sharp corners cause stress singularities (e.g., external free corners do
not), then elements should be used in those which include the proper singularities in their shape functions.

The global effects of singularities were demonstrated above for problems involving static deflections and
free vibrations. Clearly, other situations such as forced vibrations, static buckling, dynamic instability,
wave propagation, or general dynamic response would be similarly affected.
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